A Developmental Neuroscience Study

Monday, January 29, 2007
San Francisco State University, Developmental Psychology
Outline

- Introduction
- What is Developmental Neuroscience?
- Mathematical Disabilities
- Stanford Math Project
 - Specific Aims & Hypotheses
 - Study Design
 - Measures
 - Testing and Protocol Development
- Initial Results
- Current Challenges
- Looking Ahead
Introduction

- Stanford Cognitive and Systems Neuroscience Laboratory
- Department of Child Psychiatry and Behavioral Sciences, Stanford University School of Medicine
- PI: Dr. Vinod Menon, Ph.D.
- NIH-Funded Study
Developmental Neuroscience

- Developmental Psychology: “the pattern of change that begins at conception and continues through the life span“
 - social, environmental, biological factors
- Neuroscience
 - Study of nervous system
 - Macro- and micro-level
Developmental Neuroscience: MRI

BOLD Signal Response

“impulse” response to a brief stimulus

more sustained positive BOLD response (larger scale flow changes, excess of HbO2 created, reduction in conc. of Hbr)

post-stimulus undershoot, return to normal flow but slow CBV recovery (giving effective increase in [Hbr])

brief initial “dip” (HbO2 → Hbr, local flow changes)

fMRI “dip”: Menon et al., MRM 33:453; Ernst & Hennig, MRM 32:146; Hu et al., MRM 37:877

http://www.fmrib.ox.ac.uk/~peterj/
Developmental Neuroscience

- Magnetic field sensitive to deoxygenated blood
- fMRI and structural MRI
Developmental Neuroscience: The Stanford Math Project

- Overarching Goal: To investigate the neural basis of mathematical disability (MD) using a neural systems approach and state-of-the-art functional brain imaging techniques (fMRI).
Mathematical Disabilities (MD)

- Why do we care about MD?
- Much behavioral work has explored children’s developing “number sense” and mathematical strategy use (Geary et al.)
 - counting, retrieval, decomposition
 - http://web.missouri.edu/~psycorie/articles_math.htm
Mathematical Disabilities (MD)

- Grade level performance, but normal IQ and reading ability
- Inability to accurately and efficiently retrieve basic arithmetic facts.
- Investigating the neural basis of deficits in basic mental arithmetic (MA) -> cognitive mechanisms used -> theoretical models of math development.
Stanford Math Project

- Compare typically developing (TD) and MD performance on:
 - behavioral measures
 - strategy use
 - mental arithmetic (basic addition and subtraction) tasks as assessed with fMRI.
 - performance
 - brain activation
Participants

- Ages 7 to 9 (Grades 2 & 3)
- Target: 40 TD children, 40 MD children
- Longitudinal design to assess shift in strategy use over the course of development
 - Time 1 = Grade 2
 - Time 2 = Grade 3
Specific Hypotheses

- Relative to the TD group, the MD group will show
 - Significant performance deficits in addition and subtraction, subtraction more than addition
 - Use less efficient strategies
 - Rely heavily on areas related to computation (PFC), less on retrieval (PPC)
Specific Hypotheses

- Relative to the TD group, between Time 1 and Time 2 the MD group will show
 - Smaller improvements in performance
 - Sustained reliance on PFC, less development of PPC
 - Smaller increases in functional connectivity between brain areas associated with math performance (PPC, PFC, medial temporal lobe, early visual processing areas)
Study Design

Time 1:
1. Neuropsychological Assessments
2. Brain Scan
 □ Addition and subtraction, block- and event-related tasks
3. Strategy Assessment

Time 2:
■ Sessions 1-3 repeated to assess longitudinal changes in MA development
Neuropsychological Assessments

- WIAT–II
- WASI
- WMTBC (Pickering & Gathercole, 2001)
 - Central executive, phonological loop, VSS,
- CPT (Conners’ Continuous Performance Test)
Additional Measures

- **Child**
 - Edinburgh Handedness Test
 - Math Anxiety (Suinn, 1972)
 - Attitudes Toward Math Questionnaire

- **Parent**
 - Family Demographic Questionnaire
 - Child Behavior Checklist
 - Math Intervention Questionnaire
 - e.g. “Is your child currently attending a math tutoring or math schooling program?”
Exclusion Criteria

- MRI compatibility (metal in body)
- Serious medical illness, head injury, sensory impairments (visual or auditory)
- Psychopathology/behavioral problems (assessed with CBCL)
- IQ below 80
- Reading score below 25th percentile
Testing and Protocol Development

Scanner Tasks

- Format $a + b = c$ (based on Geary, 1999)
- Which numbers to use?
 - Capture range of skills
 - Variety to prevent exposure
- What is an appropriate control to use?
 - $a + 1 = b$
 - Number Identification: 1)4@5o2
Testing and Protocol Development

Scanner Tasks

- Duration of Trial
 - Once again range of skill issue
- Target accuracy
Testing and Protocol Development: Scanner Tasks

1. Event-Related Design vs. Block Design: Addition, Subtraction
 - Event-related design corrects for predictive responses
 - Block design provides stronger signal for analysis of brain activation
Testing & Protocol Development

- Pilot Testing – 2nd Graders
 - Trial length = 3.5 secs
 - Accuracy on experimental trials below 40%
 - Trial length = 4.5 secs
 - Subjects perform well on control trials, but experimental accuracy remains below the 70% target
 - Accuracy decreases as smaller addend increases
Testing & Protocol Development

Accuracy on Addition Experimental Trials (Trial Length = 4.5 secs)
Pilot Testing – 2nd Graders

- Testing at 4.5 secs revealed that this trial length was still too short to achieve 70% accuracy on experimental trials

- We decided to conduct further pilot testing, randomly assigning children to trial lengths of 5.0, 5.5, or 6.0 secs, to determine the shortest trial length necessary to obtain an adequate level of performance
Testing & Protocol Development

Accuracy

RT

![Graphs showing accuracy and RT for different trial lengths (5.0, 5.5, 6.0 sec) between control and experimental conditions. Error bars indicate ±1.00 SE.]
Testing & Protocol Development

Accuracy

RT
Initial Results

- Participant Pool: 86 children
 - 47 second-graders, 39 third-graders
 - 53% male, 47% female
 - 43 TD, 7 MD, 36 “Gifted” (IQ over 120)
- WASI IQ scores
 - Range: 79-158
 - Mean: 119
 - St Dev: 17
- WIAT-II Math Composite scores
 - Range: 65-160 (maximum score: 160)
 - Mean: 119
 - St Dev: 20
Initial Results: Behavioral

IQ Scores (assessed by WASI)

<table>
<thead>
<tr>
<th>IQ Range</th>
<th>Number of Children</th>
</tr>
</thead>
<tbody>
<tr>
<td><80</td>
<td>1</td>
</tr>
<tr>
<td>80-89</td>
<td>2</td>
</tr>
<tr>
<td>90-99</td>
<td>9</td>
</tr>
<tr>
<td>100-109</td>
<td>14</td>
</tr>
<tr>
<td>110-119</td>
<td>20</td>
</tr>
<tr>
<td>120-129</td>
<td>22</td>
</tr>
<tr>
<td>130-139</td>
<td>15</td>
</tr>
<tr>
<td>140-149</td>
<td>13</td>
</tr>
<tr>
<td>150-159</td>
<td>2</td>
</tr>
</tbody>
</table>
Initial Results: Behavioral

Math Performance (assessed by WIAT-II)
Initial Results: Behavioral

Correlation Between Math Scores & IQ

R Sq. Linear = 0.444
Initial Results: Behavioral

Correlation Between Math Scores & Working Memory Performance

<table>
<thead>
<tr>
<th></th>
<th>WIAT</th>
<th>DR</th>
<th>BR</th>
<th>CR</th>
<th>BDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>1</td>
<td>0.328(∗∗)</td>
<td>0.453(∗∗)</td>
<td>0.540(∗∗)</td>
<td>0.367(∗∗)</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>DR</td>
<td>328(∗∗)</td>
<td></td>
<td>0.190</td>
<td>0.331(∗∗)</td>
<td>0.377(∗∗)</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>0.002</td>
<td></td>
<td>0.076</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>N</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>BR</td>
<td>0.453(∗∗)</td>
<td>0.190</td>
<td></td>
<td>0.415(∗∗)</td>
<td>0.394(∗∗)</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>0.000</td>
<td>0.076</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>N</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>CR</td>
<td>0.540(∗∗)</td>
<td>0.331(∗∗)</td>
<td>0.415(∗∗)</td>
<td></td>
<td>0.542(∗∗)</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>0.000</td>
<td>0.002</td>
<td>0.000</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>N</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>BDR</td>
<td>0.367(∗∗)</td>
<td>0.377(∗∗)</td>
<td>0.394(∗∗)</td>
<td>0.542(∗∗)</td>
<td></td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>N</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
</tbody>
</table>

Correlation is significant at the 0.01 level (2-tailed).

DR = Digit Recall; BR = Block Recall; CR = Counting Recall; BDR = Backward Digit Recall
Initial Results: Imaging
Children: Experimental vs. Rest

$p = .05$
Initial Results: Imaging

Children: Control vs. Rest

p = .05
Initial Results: Strategy

- 39 scanned
- 14 counters, 15 retrievers, 10 unusable
 - Comparative analyses
 - WASI and WIAT?
 - Task performance
 - Neural activation patterns?
 - Correlative analyses
 - Percentage retrieved correlated with brain activity?
Current Challenges

- MD Recruitment
- Numbers, numbers, numbers
- Retaining longitudinal participants
Looking ahead

- Started 2nd year of study
- 20 MD, 15 TD
- Analyses:
 - Strategy assessment
 - DTI
 - Analyses with Math Anxiety, Math Intervention, Behavioral Measures
Cast of Characters

- Katherine Keller
 - Scripps College
 - B.A., Cognitive Neuroscience
- Jose Anguiano
 - Stanford University
 - B.S., Psychology
- Meghan Meyer
 - Emory University, B.A. Psychology
 - Ecole Superieur, Paris, M.A. Psychology